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i) The promoter recognition signals in halophilic archaebacteria consist of two sequence
elements centered about -30 and -40 nucleotides upstream of the transcription initiation site. The
consensus for these sequences are TTAA (-30) and TTCGA (-40). Transcription termination
signals are tracts of T residues in the (+ ) strand of the template DNA and are often preceded by a
G + C rich sequence, sometimes possessing inverted repeat symmetry. The transcripts of protein
encoding genes are generally monocistronic, initiated close to the ATG translation initiation
codon, and noticeably lack the Shine-Dalgarno ribosome binding sequence.

ii) Ribosomal RNA operons are transcribed from one up to nine tandem promoters in the 5'
flanking region. The initial step in processing precursor 16S and 23S from the primary transcript
involves cleavage by an endonuclease that is also used to excise the intron from certain tRNA
gene transcripts. The primary sequence and secondary structure of the cleavage site is highly
conserved among archaebacteria.

iii) Ribosomal protein genes are organized into eubacterial-like operons. The L1e-L10e-L12e
halophilic operon contains a putative regulatory sequence in the 5' transcribed leader that could
function in autogenous translational control.

iv) Archaebacterial ribosomal proteins exhibit substantial structural and sequence similarity to
eucaryotic ribosomal proteins and less similarity to the eubacterial equivalent ribosomal proteins.

v) Halophilic archaebacteria contain a Mn containing superoxide dismutase that is
homologous to the eubacterial Mn or Fe SOD and unrelated to the eucaryotic CuZn enzyme. The
sod gene and a related gene, s& have been cloned and sequenced from H. cutirubrum and their
regulation and expression has been characterized. These two sequences represent a unique
example of divergent evolution driven by selection at the molecular level of a duplicated
sequence within a genome.

Abbreviations:

Hcu - Halobacterium cutirubrum
Hha - Halobacterium halobium (same species as Hcu)
Hvo - Halobacterium volcanii
Hma - Halobacterium marismortui
Sso - Sulfolobus solfataricus
Eco - Escherichia coli
Sce - Saccharomyces cerevisiae

Research Objectives:

i) To characterize the principles of gene organization and regulation of gene expression in
archaebacteria.

ii) To elucidate the evolutionary relationship between these novel organisms and the
traditional eubacterial and eucaryotic organisms.

iii) To understand in biophysical and molecular terms some of the mechanisms that allow
archaebacteria to inhabit extreme environments.
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Accomplishments:

Ribosomal protein genes: A 5.2 Kbp ClaI-BamH1 fragment of Hcu genomic DNA was
cloned using synthetic oligonucleotides complementary to the coding regions of partially
sequenced Hcu 50S subunit ribosomal proteins. The fragment was completely sequenced and
found to contain the genes encoding the proteins equivalent to the Eco Lil, Li, L10 and L12
ribosomal proteins. In addition, two open reading frames designated ORF and NAB were also
detected. The transcripts from this region were extensively characterized by Northern
hybridization, S1 nuclease protection and primer extension analysis. Four promoters were
located in front of ORF, NAB, Llle and Lle genes, respectively. The first three initiate
transcription at or adjacent to the respective ATG translation initiation codons whereas the
fourth initiates to produce a transcript-with a 75 nucleotide long untranslated leader sequence.
Preceding each transcription initiation site are two motifs that appear to be conserved; they are
the general archaebacterial motif TTAA centered at about position -30 and a halophile specific
motif TrCGA centered at about position -40. Transcription termination occurs at poly T tracts in
the DNA (+) strand that are often preceded by GC rich sequences sometimes containing inverted
repeat symmetry. Within the coding regions, poly T sequences are noticeably under represented
and the TTF Phe codon is not used.

The tricistronic mRNA encodes the Lle, L10e and L12e ribosomal proteins that are
produced in a 1:1:4 stoichiometry. Each of these cistrons is preceded by what appears to be the
equivalent of the eubacterial Shine-Dalgarno ribosome recognition sequence. Monocistronic
mRNAs lack these sequences and may initiate translation by a eucaryotic thread on type
mechanism. The Lle binding sequence on 23S rRNA has been defined previously. We
identified a region in the 5' untranslated leader to the Lie-10e-L12e mRNA that resembles in
primary sequence and secondary structure this rRNA binding site. We propose that this mRNA
leader sequence is used to autogenously regulate translation of the mRNA by a mechanism
similar to that employed in eubacteria. Thus halophilic archaebacteria retain the same gene
order and possibly also the same regulatory mechanism for controlling ribosomal protein
synthesis that is found in eubacteria.

Ribosomal protein structure: The complete amino acid sequences of the Lile, Lle, L10e
and L12e ribosomal proteins from Hcu and Sso have been deduced from the respective gene
sequences and compared to the amino acid sequences of the respective eucaryotic and eubacterial
equivalent ribosomal proteins. On the large ribosome subunit, the 1:4 complex of L10e and L12e
in loose association with Liie binds to 23S rRNA at about nucleotides 1050-1120 to form a
prominent stalk structure. This structure functions as a factor binding domain with associated
GTPase activities during the protein synthesis cycle. The Lie protein binds to 23S rRNA near
nucleotide 2150 and forms a prominent ridge on the large subunit opposite the stalk structure.
The Lle protein stabilizes peptidyl tRNA binding to the P site and stimulates GTPase activity at
the factor binding domain. Alignments of amino acid sequences of these four proteins from
eubacteria, eucaryotes and archaebacteria indicate that (i) archaebacteria represent a distinct
phylogenetic group and (ii) in general, the archaebacterial proteins more closely resemble their
eucaryotic rather than the eubacterial equivalent proteins. Similarities between the Llle, Lle,
LiOe and L12e proteins of Eco, Hcu, Sso and Sce are presented in the accompanying table.

Our work has provided some valuable insights into the structure and evolution of the
L10e-L12e complex and has the important potential to help us identify functional domains
within the respective proteins. Eucaryotes including Sce possess two different L12e genes
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designated type I and II; in Sce, each of these is again duplicated to give four L12e genes
designated 1A, IB, 11A and IB genes. Within the universally shared factor binding domain of all
L12e proteins (from eubacteria, archaebacteria and eucaryotes), the type I versus type II split
appears to be the most ancient. This implies that the common ancestor contained two L12e genes
and that one of these (probably the type II gene) was lost from the eubacterial and archaebacterial
lines. Although the factor binding domain remains a constant feature of all L12e proteins, the
eubacterial protein clearly differs in its overall structure from the archaebacterial and eucaryotic
equivalents. In the Eco L12, the factor binding domain is shifted to the carboxy terminus of the
protein and the amino terminus appears to have originated by a partial duplication event. The
archaebacterial-eucaryotic L12e proteins have the factor binding domain at the amino terminus
and a unique charged region at the carboxy terminus that is not present in the eubacterial protein.
Furthermore, a unique gene fusion placing
the distal 75% of the L12e gene at the 3' end
of the L10e gene is evident in both TABLE2. Similariiestween theLl c. Lie. LiOc. andLl2e ribosomal proteins of E. colt, H. czairubrum,
archaebacteria and eucaryotes. This domain S. solfararicus, and S. cerevisiae
in the two proteins is highly conserved,
implying a strong constraint on sequence Leng, Identitie Gaps
divergence. In eubacteria, most of this fusion Lle
sequence has been removed from the HcuISso 164 65(40%) 1
contemporary LIO gene by subsequent Hcu/Eco 138 46(33%) 1

Sso I Eco 139 45(32%) 2
deletion and there is virtually no homology Lie
left from the ancient fusion events. These HcuISso 214 66 (31%) 4
and other detailed analyses of the structure, Hcu /Eco 211 58 (27%) 12
function and evolution of the domains of L0c220 49 (22%) 0
the L11e, Lle, L10e and L12e proteins is Hcu/Sso 343 90(26%) 1
continuing. Hcu/Eco 169 40(24%) 6

Sso / Eco 169 35 (21%) 6
Hcu /Sce 329 76 (23%) 7Superoxide dismutase in the Sso/Sce 322 72 (23%) 7

archaebacteria: When life originated about Eco/Sce 163 27(17%) 6
3.5 x 109 years ago, the earth's atmosphere Ll2c

HculSso 110 46 (42%) i
was anaerobic. Oxygen began to accumulate!, LlIo

in the atmosphere about 2 x 109 years ago as a Globuiar Domain
by-product of the photosynthetic process. HCU/Sso 56 28(50%) 0

Hcul/Eco 44 13 (30%) 7Molecular oxygen is toxic to living organisms Scu/Eoo 44 12(27%) 7because of the reactivity of the superoxide Hcu/Sce IA 57 16 (28%) 2
anion. The enzyme superoxide dismutase ISce lB 57 18 (32%) 2
carries out the dismutation of superoxide to /Sce IIA 54 9(17%) 6

/See [IB 54 16(30%) 6molecular oxygen and peroxide. Two Sso/Sce 1A 57 18(32%) 2
separate SOD activities have evolved /Sce1 B 57 17(30%) 2
independently during evolution, the CuZn / TB IIA 54 12 (%) 6/so SceI 54 17 (31%) 6
enzyme of eucaryotes and the Mn or Fe see [A/Sce IB 58 32(55%) 2
enzyme of eubacteria (and eucaryotic /sce A 55 8(15%) 6
organelles). We have shown that the /Scm [I 55 14(25%) 6
halophilic SOD is homologous to the s /sce1 54 11(20%) 6
eubacterial enzyme. The enzyme activity has See ILA/Sce [LB 52 27 (52%) 0
been purified to near homogeneity from Hcu ot:Pe avenge legh in amino acids over the region ofcomgan-
and the gene encoding the activity has been son of he ,.o a"ve dc.-,te me as tsh.eng of the coroaronregin minus half of the coca) gaps- Identities are given as die number
cloned, sequenced and its activity has been (and Ieta gc of efes, matches over tm region of .characterized. Gaps are given .,as the umbe of deletions (or ,.s rons, require to

chvc ahlrmentof the rwo sequences within the region of to tmars.

The Li2c globular dor-tajn is te reton indicated in Fie, 48 In Hcu and
Sso I.12e this rcione sse trli (fron poitton I to 56ot ig, 4A (wiaurl-
sons witth Co LI2 arr with iie (" domain and n"t ihe N-terminui iin
Fig 4fl
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In addition to the sod gene which encodes the authentic SOD activity that has been
purified, we cloned a second gene designated s& from the Hcu genome which is highly similar to
sod. This §ig gene is actively transcribed; no sod-like activity corresponding to the product of the
sIg gene has been detected; the transcriptional regulation of g is different from sod and the 5'
and 3' flanking regions are unrelated. Within the coding region, the four codons used to specify
the amino acid residues used to bind Mn in the protein are conserved in both genes. The genes
have 87% nucleotide sequence identity whereas the proteins they encode have only 83% amino
acid sequence identity. Mutations occur randomly at first, second and third codon positions and
transversions outnumber transitions. Most mutational differences between sg and sod are
confined to two limited regions; other regions totally lack differences. These two gene sequences
are apparently in the initial stage of an unusual mode of divergent evolution. Presumably, this
divergence is being driven by strong selection at the molecular level for either acquisition of new
or partition and refinement of ancestral functions in one or both of the respective gene products.

An attempt to clarify the intriguing sod-slg relationship in Hcu was made by examining
the homologous sequences from the related halophile Hvo. This organism also has two copies of
a sod related sequence; amazingly both copies are nearly identical, differing only at codons two
and three as follows:

codon 1 2 3 4 199 200
amino acid M S D Y F E TER
sod I ... RACACCTTAC ATG TCA GAC TAC ...TTC GAC TAR CGCGTACGC...

6I O00 0000 @QO00 @0 00 0

sod 2 ... GTTACACATT RTG AGC -7 TAC ... TTC GAG TAR CCGGRTCAT...

H S - Y F E TER

The remaining 197 codons are identical and homology abruptly ends at the cistron boundaries.
We suspect that the duplication of the primordial sod gene was an ancient event and that in Hcu
selection at the molecular level is operating to produce two proteins with different (although
probably related) function whereas in Hvo selection is operating to conserve structure and
function. We are beginning to exploit the Hvo DNA transformation system to address questions
relating to the function, regulation and evolution of the sod genes in halophilic archaebacteria
halophilic rRNA operons.

Ribosomal RNA genes: In halophilic archaebacteria, rRNA operons have the following
gene order: 16S, 23S and 5S. An ala tRNA gene is located in the 16S-25S intergenic space and a
cys tRNA is sometimes positioned distal to the 5S gene. The 5' flanking region contains from
one up to nine tandemly repeated promoter sequences each containing the TTAA (-30) and
TTCGA (-40) conserved sequences. The 16S and 23S genes are flarked by inverted repeat
processing sequences that are highly conserved in both primary sequence and secondary
structure. Excision at these sites liberates precursor 16S and 23S rRNAs from the primary
transcript; it appears likely that the endonuclease responsible is identical to enzymes used to
excise introns from the 23S rRNA genes.

During a comparison of leader sequences from Hcu, Hvo and Hha, we have observed an
80 nucleotide long region that immediately precedes the 16S processing site that is more highly
conserved than is the 16S gene sequence between these organisms. Only the last few nucleotides
of this sequence are required for recognition by the endonuclease. The function of the remainder
of this conserved sequence is being investigated.



6

The species Hma has two rRNA operons, designated HC8 and HH10. The first is
preceded by four tandem promoters whereas the second is preceded by only a single promoter. In
addition, the HH10 operon appears to lack the normal 16S rRNA processing sequence. We have
begun a complete sequence comparison of these two operons. Remarkably, our results indicate
extensive differences between the two 16S coding regions. These include base substitutions as
well as insertion-deletion. In virtually all organisms, the sequence of multiple rRNA genes are
virtually identical. The functional significance of this sequence variation in the two Hha
operons is currently under investigation.
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